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Abstract 

Over the last few decades Complexity Scientists have shown that many natural systems possess 

similar geometric patterns that are repeated over multiple scales of observation. Using Euclidean 

geometry it is impossible to measure these forms as the closer the observer approaches the natural 

feature with a measuring device, the longer the result becomes. In response to this situation fractal 

geometry was developed as a means for determining, over progressive scales, the characteristic visual 

complexity of natural systems and forms. More recently it has been demonstrated that fractal geometry 

can also be useful for measuring the visual complexity of the constructed environment. As a result of 

this, it became possible, in the late 1990s to compare the fractal dimensions of both natural and 

constructed forms and thereby investigate the extent to which buildings are a reflection of their natural 

setting. The most famous examples of this provided evidence that a formal connection could be traced 

between the city of Amasya in Turkey and the landforms of its natural setting and a similar augment 

has been made about Sea Ranch in California. With only minimal evidence, a range of conclusions 

were drawn from this early work about the connection and influence of a local ecology on local 

architecture. The present paper re-tests these previous results using a more refined, computational 

version of the fractal analysis method and in doing so begins to explore the further application of this 

method for comparing natural and architectural forms.  
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Introduction 

A common proposition that is repeated in arguments about regional and environmentally sustainable 

architecture is that traditional dwellings are a reflection, in some way, of their natural setting 

(Bechhoefer & Bovill, 1994). The present paper sets out to reconsider evidence that a quantitative 

comparison can be made, using fractal analysis, between natural and synthetic forms; say between a 

building and its geographic setting.  

In 1994, William Bechhoefer and Carl Bovill applied Mandelbrot’s box-counting method of fractal 

analysis to indigenous buildings and natural land forms in Amasya, Turkey. They concluded that each 

of these features had similar fractal dimensions and thus, the topography must have either influenced 

the design of the buildings, or alternatively all of these features were shaped by larger environmental 

conditions. Bovill reproduced these same findings in 1996 and further suggested that one way of 

determining a successful regional building could be to assess whether its fractal dimensions were 



  

similar to those of the surrounding landscape or vegetation. As an example, Bovill proposes that the 

highly irregular coastline of Sea Ranch (California) was closely echoed in Moore, Lyndon, Turnbull 

and Whitaker’s famous Sea Ranch Condominium. In this way, Bovill suggests that there is potentially 

mathematical evidence that this famous critical regionalist building is responding to its natural setting 

in much the same way that the landscape has been shaped by local environmental and climatic forces.  

Bovill’s (1996) proposition has fascinated a number of scholars and it has been repeated in arguments 

about environmentally sustainable and regional architecture (Makhzoumi & Pungetti, 1999). If valid, 

it could deepen our understanding of one form of ecologically responsive architecture, by providing 

quantitative results to demonstrate a relationship between the forms (three dimensional shapes or 

geometry) of local ecology and local architecture. However, the data supporting the Amasya findings 

has only once been reviewed (Lorenz, 2003) and the claims surrounding the Sea Ranch Condominium 

have never been tested. Moreover, none of these examples have used precisely the same analytical 

method so comparisons are difficult to make.  

The present paper commences with an overview of the history of the use of fractal geometry to 

analyse the characteristic complexity of both natural features (Section 1) and of the built environment 

(Section 2). This is followed (in Section 3) by a description of the box-counting analytical method and 

its computational variation which is used for the later comparison of fractal dimensions. In the next 

section a close review of the original arguments is undertaken concerning the validity of comparing 

natural and constructed systems using fractal dimensions (Section 4). In the penultimate section of the 

paper (Section 5) the computational fractal method is applied to both Amasya and Sea Ranch and a 

comparative analysis of the original results and the new results is undertaken. Finally the paper 

reviews the validity of the two cases and their use to support the proposition that good regional and 

traditional dwellings will have similar characteristic complexity to their natural settings. 

The present study has several practical limitations that should be considered before progressing. First, 

the research is not about environmentally sustainable architecture, but rather about testing the 

evidence that has been used to support one claim about the environmental responsiveness of 

regionalist architecture. Past research has consistently demonstrated that there is not necessarily any 

environmental benefit to mimicking a natural form in a synthetic construct (Ostwald & Wassell, 2002; 

Ostwald, 2009). There may be good reasons for suggesting that a building should reflect its setting, 

but it is impossible to generalise this condition to claim that buildings which do not reflect their 

contexts are less sustainable than buildings that do. A second observation is that, even if the evidence 

for the cases of Amasya and Sea Ranch is poor, this does not completely invalidate all arguments 

about the relationship between form and setting, but it would call into question any claims derived 

specifically from these cases. Finally, the present testing process is largely focussed on images that 

have been previously used to support Bovill’s argument. It is possible that these images are not 

representative or that better or worse ones are available, but for consistency the originals are used as 



  

the primary basis for the present research and are only supplemented when no alternatives are 

available. If this occurs, it is noted in the text.  

Measuring Natural Systems 

Measuring the world  

Since Euclid developed a model of regular geometric relationships around 300BC, scientists and 

mathematicians have tried to use this system to measure and quantify the world by determining the 

size and complexity of any natural object or feature in the landscape. However, it wasn’t until the 

1970’s that advances in geometrical thinking demonstrated that traditional Euclidian measurements 

give a very poor representation of the complexity of the world.  

Benoit Mandelbrot in Les Objects Fractals: Form Hasard et Dimension (1975) proposed an 

alternative to Euclidian geometry; fractal geometry. According to Voss (1988), “Mandelbrot’s fractal 

geometry provides both a description and a mathematical model for many of the seemingly complex 

forms and patterns in nature and the sciences” (p. 21). From Mandelbrot’s work it has been shown that 

star systems, geological formations, clouds, plant ecosystems, mountain ranges, coastlines and other 

natural systems typically possess similar geometric forms that are repeated over multiple scales of 

observation. Using Euclidean geometry, it is impossible to measure, with any accuracy, any 

dimensions such as lengths of these non-linear forms. However, Fractal geometry, by iterating 

measurements over progressive scales, can be applied to determine the characteristic visual 

complexity of natural forms. Fractal geometry is ideal for exploring the complex, and seemingly 

random forms found in the natural world. It is a geometry which can be used to demonstrate that 

within many chaotic systems a deeper rhythm of similar patterns is measurable. Fractal geometry then 

“provides a quantifiable measure of the mixture of order and surprise in a rhythmic composition” 

(Bovill, 1996, p. 3). 

Measuring the fractal geometry of nature 

In his 1982 publication The Fractal Geometry of Nature, Mandelbrot continues to explain, develop 

and refine the applications of fractal geometry, further exploring the fractal qualities of nature. Mostly, 

the publication describes methods for producing visual images of nature’s forms from algorithms; 

plotting mathematical “forgeries” of nature. However, of interest to scholars who seek to represent the 

complexities of nature in a clear and comparable manner, Mandelbrot provides an explanation of 

several methods used to calculate the dimensions of natural forms, using fractal geometry. He states 

that “[s]cientists will (I am sure) be surprised and delighted to find that not a few shapes they had to 

call grainy, hydralike, in between, pimply, pocky, ramified, seaweedy, strange, tangled, torturous, 

wiggly, wispy, wrinkled, and the like, can henceforth be approached in rigorous and vigorous 

quantitative fashion” (Mandelbrot, 1982, p. 5). Voss (1988) argues that fractal geometry is particularly 

“appropriate for natural shapes” (p. 26) and that at “large scales, natural boundaries, geological 



  

topography, acid rain, cloud, rain and ecosystem boundaries, seismic faults, and the clustering of 

galaxies are all susceptible to fractal analysis” (p. 36). 

In The Fractal Geometry of Nature, Mandelbrot considers particular natural forms and systems which 

can be analysed and measured. Included are calculations for measuring lengths and irregularity of 

rivers, lakes, and trees as well as the fractal dimension of the sky, clouds and galaxies. In particular 

Mandelbrot considers the length of coastlines in some depth providing a famous explanation of 

fractals. Mandelbrot seems pleased that “coastline length turns out to be an elusive notion that slips 

between the fingers of one who wants to grasp it” (Mandelbrot, 1982, p. 25), that is, until he proved 

that a fractal dimension can be calculated for any coastline, and he demonstrated the usefulness of this 

dimension by calculating and comparing the coastlines of several nations.  

Mandelbrot’s work has been adopted by many others as a method for providing a quantitative 

understanding of the natural world. Lovejoy has analysed clouds, measuring their fractal dimension, 

which he describes as “‘wiggliness’ or degree of contortion of the perimeter” (1981, p. 196). Fractals 

have been utilised for large scale analysis including Peebles (1989) research on galaxy distribution. At 

a much finer level, Lung and Zhang (1989) are amongst many scholars who use fractal geometry to 

measure and attempt to predict the growth of cracks in physical surfaces. Using fractal geometry to 

measure vegetation growth or decline is now a common method in botanical studies. For example, 

Morse, Lawton, Dodson and Williamson (1985) calculate the fractal dimension of the outlines of 

certain plants and then consider how the insects living on them might be affected by the lower or 

higher fractal dimension of the plant. Others have added to the existing data of measured coastlines 

with calculations of Norway (Feder, 1988), Britain and California (Bovill, 1996). Makhzoumi and 

Pungetti propose fractal analysis as a method to interpret and understand the ecological landscape 

(1999). Recently, the fractal dimension of several Australian landscapes have been tested and the 

conclusion reached that “different landscape types can be calculated by their mean fractal dimension” 

(Perry, Reeves & Sim, 2008, p. 15).  

Fractal geometry has also been used to analyse preferences for the visual complexity of natural 

landscapes (Keller, Crownover & Chen, 1987; Stamps, 2002; Hagerhall, Purcell & Taylor, 2004). The 

method used in this research extracts silhouettes of natural landscape items and calculates the fractal 

dimension of the resulting linear forms. Keller, Crownover and Chen initiated much of the 

methodology in this area of study. Their work attempts to use fractal parameters to distinguish 

between different elements in a natural scene, such as a mountain and a tree. The process involves 

taking silhouettes from photographs at different scales of trees and mountains. The results found that 

“the D values are relatively stable and the recovered values for tree lines are considerably higher than 

those for the smoother mountain line” (1987, p. 624). In other words, the fractal dimensions for trees 

fell into a similar grouping, while the dimensions for the mountains fell into another cluster. The 

authors were satisfied that fractal dimension ranges can be used to distinguish between different 



  

elements in nature. The ongoing work of Hagerhall, Purcell and Taylor (2004) is largely focused on 

determining preferences for images of certain fractal dimensions and they agree that an important 

procedural method is analysing the “silhouette outline between sky and landscape” (p. 248). They 

reason that the silhouette can be extracted without personal judgement by a software program and that 

past research by themselves and others has included silhouettes so the collection of data can be 

increased by continuing work in this area.  

Measuring Architecture 

Mandelbrot (1982) not only pioneered the application of fractal geometry to nature, he also suggests 

that it may be useful in understanding the properties of human creations, such as art and architecture. 

Mandelbrot says of fractal geometry that “[i]t describes many of the irregular and fragmented patterns 

around us” (1982, p. 1). In this way, buildings can be considered as “irregular and fragmented 

patterns”, as most built forms or urban layouts produce repeated shapes at different scales. According 

to Bovill,  

[w]e experience architecture by observing the overall profile of a building from a 

distance; as we approach closer, the patterns of window and siding come into attention; as 

we approach even closer, the details of doors and window frames come into attention, 

down to what the door knob is like. The process then continues inside the building. The 

fractal characteristic of an architectural composition presents itself I this progression of 

interesting detail as one approaches, enters and uses a building (Bovill, 1996, p. 117). 

This description is reminiscent of Mandelbrot’s claim that “in the context of architecture: A Mies van 

der Rohe building is a scalebound throwback to Euclid, while a high period Beaux Arts building is 

rich in fractal aspects” (1982, p. 23-24). Just as Mandelbrot has used mathematical methods to 

calculate the fractal dimension of coastlines and compare them, so could architecture be analysed and 

compared for visual complexity (Bovill, 1996).  

There are various traditions involving the fractal analysis of the built environment. At a macro-scale, 

the fractal analysis of urban plans has been occurring for almost 20 years. Kakei and Mizuno (1990) 

and Rodin and Rodina (2000) have applied fractal geometry to the analysis of historic street plans. At 

a larger scale Cartwright (1991) offered an overview of the importance of fractal geometry and 

complexity science in town planning and Batty and Longley (1994) and Hillier (1996) have developed 

increasingly refined methods for using fractal geometry to understand the visual and growth patterns 

of macro-scale urban environments. More recently, Batty (2005) has analysed the fractal dimension of 

various urban plans and Cardillo, Scellato, Latora and Porta (2006) have calculated the fractal 

dimension of the street patterns of 20 different cities. Ben Harmouche (2009) uses the concepts of 

fractal geometry to theoretically analyse and comprehend seemingly chaotic, traditional Muslim urban 

layouts. 



  

At a smaller scale, Bovill’s 1996 work, Fractal Geometry in Architecture and Design, was the first 

major exploration of the relationship between fractal geometry and art, music, design and architecture. 

In particular, in this work Bovill demonstrates a mathematical way of measuring and comparing the 

fractal dimension of several important historical buildings. Bovill calculated the fractal dimension of 

these buildings using an application of Mandelbrot’s box-counting technique, to determine the 

approximate fractal dimension, or characteristic visual complexity, of architectural plans and 

elevations. Bovill’s box-counting method has since been employed to calculate the fractal dimension 

of a range of ancient buildings, including Mesoamerican pyramids (Burkle-Elizondo, 2001; Burkle-

Elizondo & Valdéz-Cepeda, 2006) and the fractal dimensions of the Doric, Corinthian and Composite 

orders of architecture (Capo, 2004). Sala reproduces Bovill’s work on Frank Lloyd Wright’s Robie 

house without any additional interpretation (2002) and Gozubuyuk, Cagdas and Ediz (2006) use the 

box-counting method to analyse the urban layout and typical buildings of two historical districts of the 

Turkish cities Istanbul and Mardin. Their purpose for the analysis was to use digital design methods to 

create a new building that might respond to existing architectural “languages” of the districts. Other 

scholars have suggested that the box-counting method could be used to determine if buildings with 

similar fractal dimensions to natural scenes will be aesthetically preferred by, and reduce the stress of, 

the general populace (Joye, 2007). 

Although many scholars quote Bovill’s work it remains, with the exception of Lorenz’s (2003) 

extrapolation, almost completely untested. However, this paper is part of an ongoing process of 

thoroughly assessing Bovill’s box-counting method and exploring its usefulness as an architectural 

application. In the last two years a computational variation of the fractal analysis method has been 

developed and tested by the present authors on the built works of Le Corbusier and Frank Lloyd 

Wright (Ostwald, Vaughan & Tucker, 2008) partially confirming Bovill’s original results. This 

computational method has since been used to analyse the domestic architecture of Eileen Gray 

(Ostwald & Vaughan, 2008), Peter Eisenman (Ostwald & Vaughan, 2009) and Kazuyo Sejima 

(Ostwald, Vaughan & Chalup, 2009). This present paper records the first quantitative analysis of the 

application of the box-counting method, as a tool to compare nature and architecture, since the mid-

1990s (Bechhoefer & Bovill, 1994; Bovill, 1996). 

The Box-Counting Method 

The method used to determine the fractal dimension of many of the aforementioned examples is 

known as “box-counting”. This process can be applied to both two dimensional representations of 

architecture and to landscapes, vegetation and other natural forms. This method is thus useful for 

comparative measurements between architecture and its setting. The process of box-counting any 

natural or architectural object (figure 1) involves translating the subject into a linear image, such as the 

elevation of a building (figure 2) or the outline of a mountain. A grid is placed over this image and the 

number of squares which contain part of the image are noted (figure 3). This grid is then replaced by 



  

another with closer spacing, and the number of squares are counted once again (figure 4). This 

sequence progresses for a set number of iterations. The decreasing grid size allows for levels of detail 

in the image over different scales to be discovered. An object with a higher fractal dimension usually 

maintains highly detailed representation over many levels of observation. By plotting a comparison of 

the grid sizes with the number of counted boxes on a log-log graph, the slope of the resulting graph 

provides the fractal dimension, in the case of an image, a number between 1.0 and 2.0 (Bovill, 1996; 

Lorenz, 2003). The higher this number is (that is, the closer the number is to 2.0) the closer the image 

is to appearing as a two-dimensional object and thus the higher the visual complexity of the original 

object. 

 
 

  

Figures 1-4. The Box-counting process.  

The box-counting process has been automated and refined in computer programs such as Benoit 

(Trusoft’s software for analysing the fractal dimension of images) and Archimage (a program 

developed by the University of Newcastle specifically to analyse the fractal dimension of 

architecture). The line image is loaded into the programs which then automatically select the 

positioning of the image in the grid, convert the original line work into single-pixel widths and count 

the detailed boxes over many iterations. The images analysed for this paper have been processed by 



  

both Benoit and Archimage, and the average result from both programs provides a final fractal 

dimension for the image. Utilising a computational variation allows for rapid analysis and a greater 

range of scales for analysis, however, deficiencies have been noted with the method including 

problems associated with line thickness, positioning of the original image and the significant lines 

selected for analysis (Ostwald, Vaughan & Tucker, 2008;Vaughan & Ostwald, 2009). 

The resulting values of the fractal dimensions of images may then be compared to discover their 

numerical difference. The D(range) value provides the difference between the highest and lowest D 

results of a selected set of images. The %gap is the D(range) result expressed as a percentage of the 

possible maximum range (being 100%) between D = 1.0 and D = 2.0: thus %gap = 100 x D(range). Past 

research using this method has reported the %gap data based on a range from D = 0.0 to D = 2.0 (ie. % 

gap = {100 x D(range)}/2) however, in the present paper, all reporting of %gap results (old and new) has 

been corrected to the consistent range D = 1.0 and D = 2.0. 

Comparing Local Architecture and Local Ecology  

In conjunction with William Bechhoefer in 1994, Bovill published his first fractal dimension 

calculations on architecture. Bechhoefer and Bovill’s paper utilises Mandelbrot’s box-counting 

method of fractal analysis to undertake a comparative study which links the fractal dimensions of 

natural forms with the fractal dimensions of built forms. Working on the general assumption that there 

might be a visual “fit” between the local landscape and a building’s appearance, Bechhoefer and 

Bovill applied fractal geometry to indigenous buildings and natural land forms in Amasya, Turkey. 

They concluded that the geology, topography and local environmental character had influenced the 

design of the buildings. 

Bovill (1996) included the analysis of Amasya he undertook with Bechhofer in a later work, repeating 

their conclusion, that the natural conditions in some way influence the architectural design. In addition 

to the case of Amasya, Bovill also offers three additional examples where he believes a clear 

connection can be made between a natural setting and building. The first of this is between the design 

of Alvar Aalto’s Home and Office and the tree spacing of the forest surrounding it. The second is 

between the highly irregular coastline and geology of Sea Ranch, California, and Moore, Lyndon, 

Turnbull and Whitaker’s Sea Ranch Condominium complex. The final connection is proposed between 

the “relatively smooth” coastline at Nantucket and the “simple, basic shapes” of the houses there 

(Bovill, 1996, p. 181). To support these four cases, Bovill offers mathematical data concerning both 

the buildings and mountains in Amasya, and a calculation of the fractal dimensions of the coastline of 

Sea Ranch, but he does not analyse Sea Ranch Condominium. No data is presented for the analysis of 

Alto’s work nor the architecture or topography of Nantucket. 

Accepting Bovill’s arguments, Bechhoefer and Appleby (1998) propose that because “the fractal 

dimension of vernacular housing is very similar to that found in nature” (p. 3) then perhaps new 



  

buildings in historic settings should be designed to match similar levels of visual complexity and thus 

provide a better contextual fit. They then use fractal geometry, paradoxically aided by the musical 

patterns in a Brahms waltz, to generate the form and fenestration of a building design for the historical 

city of Aksehir in Turkey. This might seem a reasonable thing to do, to produce a new building which 

is sensitive to its historic setting, but there is much wrong with their proposal which borders on 

pastiche, and other researchers have rejected such simplistic responses (Ostwald, 2009). For example, 

Stamps (2002) questions the desirability of achieving a similar level of visual complexity for 

architecture and for its natural setting. As part of his extensive research investigating fractal 

dimensions of the built environment Stamps produced computer-generated images of mountains and 

cityscapes with deliberately matching fractal dimensions, and tested peoples’ preferences for which 

should match. He concluded that his test subjects did not necessarily prefer the fractal dimension of 

the buildings to match the natural environment and that “urban design decisions regarding skylines 

should not assume that matching [fractal dimensions] of skylines and landscapes is a good idea” 

(Stamps, 2002, p. 170). 

Nevertheless, interest in the relationship between buildings and landscapes continues in this field. In 

2003, Lorenz reiterated Bovill’s conclusions agreeing that “the measured fractal dimensions of the 

environment, elevation and detail will be similar” (p. 47). However, Lorenz’ intention was to repeat 

Bovill’s method, not to methodically test the veracity of his evidence. In essence, Lorenz confirms that 

Bovill’s results are accurate, insofar as the original method and data allow. Further work connecting 

architecture and nature by way of fractal dimensions is even more limited in its presentation and use of 

quantitative data. Burkle-Elizondo and Valdéz-Cepeda, in their studies on the fractal dimensions of 

Mesoamerican pyramids, suggest that “it is possible to identify the pyramids with particular mountains 

in the landscape” (2006). Yet, although they provide calculations for the pyramids, they do not 

undertake calculations of the surrounding mountains to provide any evidence for their claims. 

Revisiting Amasya and Sea Ranch  

Application of a comparative fractal methodology to Amasya 

The city of Amasya, Turkey, has been settled for over 2000 years. Members of the ruling royal family 

and important leaders were based there during the Ottoman period, when the city became established 

as a significant centre for creativity and the base for “many important court architects, artists, artisans 

and poets” (Bechhoefer, 1998, p. 25). The area of Amasya analysed by Bechhoefer and Bovill is 

Hatuniye Mahallesi which is “the historic neighbourhood on the north bank of the Yesilirmak River 

[and] is the clearest embodiment of Amasya’s history. […] The riverfront houses are among the most 

important assemblages of traditional residential construction in Anatolia” (Bechhoefer, 1998, p. 28). 

These buildings maintain much of their history and are set in a significant geographical location. 

Looming above the strip of old houses of Hatuniye Mahallesi is a large craggy hill, appearing as one 



  

massive peak. To compare the fractal dimensions of the architecture and the local landscape, 

Bechhoefer and Bovill undertook a box-counting analysis calculation on three images; a line drawing 

of the dominant hill (figure 5), the elevation of five connected historical houses along the river front 

(figure 6), and the urban layout plan of Hatuniye Mahallesi (figure 7). It is not clear where each of 

these images were sourced from or how the line drawings were produced.  

 

 

 

Figures 5-7: Reproduction of Bovill’s images for fractal analysis of Amasya - the hill, the elevation of the row of 

houses and the urban plan 

Bovill uses a manual method to produce a range of results for these three images (elevation, urban 

plan and hill) at Amasya and concludes that the “fractal dimension of the traditional housing is very 

close to that of the hill, which is the dominant visual feature of the city of Amasya. This suggests that 

the indigenous builders somehow applied the rhythms of nature to their housing site layout and 

elevation design” (1996, p. 145). In this context, what does “very close” mean?  

Bovill’s calculations for the fractal dimension, or D, of the three Amasya images range between a high 

of D = 1.717 for the traditional house elevations to a low of D = 1.432 for the urban plan. This is a 



  

range of D = 0.285 which can be expressed as a percentage of the maximum possible range of D for 

an image (1.0 < D < 2.0). The gap represents a 28% range between the visual complexity of the three 

images as calculated by Bovill. Lorenz used an early version of the Benoit software to repeat Bovill’s 

calculations in 2003. Lorenz’s results recorded a high of D = 1.546 (for the elevations) and a low of D 

= 1.357 (for the hill). The range was D = 0.189 and the gap, expressed as a percentage, was 18.9%. 

This seems to provide even stronger evidence for Bovill’s conclusions. When the computational 

fractal analysis method (Ostwald, Vaughan & Tucker, 2008) is applied to the three images the highest 

result is D = 1.585 (for the urban plan) and the lowest is D = 1.495 (for the hill). This is a gap of D = 

0.080 or 8% (see Table 1). 

This analysis of two past data sets, and one new set, seems to suggest that the more accurate and 

consistent the method, the closer the three results are to supporting Bovill’s conclusion. However, the 

recent analysis of sets of houses by Le Corbusier, Frank Lloyd Wright, Eileen Gray and Peter 

Eisenman has found that houses which appear to be genuinely visually similar will often have a gap of 

less than 2%. Indeed, a gap of more than 8% suggests a significant difference in visual character.  

Table 1: Comparison of fractal dimensions calculated for Amasya 

Results  D(elevations) D(hill) D(urban plan) D(range) %gap 

Bovill (1996) 1.717 1.566 1.432 0.285 28.5% 

Lorenz (2003) 1.546 1.357 1.485 0.189 18.9% 

This paper 

(2009) 

1.505 1.495 1.585 0.080 8% 

 

Application of a comparative fractal methodology to Sea Ranch 

Bovill’s second proposal, concerning the alignment between natural and built forms that are 

responsive to the environment, is focussed on Sea Ranch, California. This remote, exposed region 

north of San Francisco was developed in the 1960’s into a township which set out to model regionalist 

and ecological principles of design, where the planning aim was “to link the character of natural form 

to the character of built form” (Halprin, 2002, p. 12). For this reason alone, the mathematical analysis 

of the relationship between the landscape and the buildings is of interest.  

The highly irregular natural coastline and topography of Sea Ranch is described by Canty as “of wild 

beauty and intimidating power, more challenging than comforting: hillsides thick with fir and 

redwoods; grassy meadows mowed and mauled by sheep […] cypress hedgerows [and] finally, the 

blue-green sea, surging against huge sculpted rock formations and steep bluffs, carving irregular 



  

inlets” (2004, p. 23). Bovill suggests this landscape is echoed in Moore, Lyndon, Turnbull and 

Whitaker’s Condominium One, the first large building in the new Sea Ranch development. It is easy 

to understand Bovill’s proposition because descriptions of the building regularly draw connections to 

the local context. For example, Lyndon and Alinder argue that the walls of Condominium One “drop 

like cliffs from its irregular edges, themselves further modulated by bays, projections, and hollows as 

they reach to the ground. The volume they make is like a large, rectilinear landform, a wooden 

escarpment with edges that move back and forth like the boundaries of a cove” (2004, p. 39). 

Despite such clear conceptual links between the visual and formal qualities of Condominium One and 

the landscape of Sea Ranch, the only data provided by Bovill to support his argument are calculations 

of the fractal dimension of the coastline at Sea Ranch. In order to investigate any connection between 

the visual complexity of the landscape and of the building, new data has to be produced. For the 

present paper, the computational fractal analysis method has been used to recalculate the D of the 

coastline image provided by Bovill (Figure 8). Then, for comparative purposes, the D of the single 

image Bovill provides of Condominium One is also produced (figure 9). In addition, the coastline 

immediately beside Condominium One was redrawn from the site plan (Lyndon & Alinder, 2004) 

(Figure 10) and finally, four new elevations of Condominium One were redrawn for the present paper 

based on original drawings by Moore and Turnbull (Johnson, 1986) (Figures 11 to 14), and an average 

fractal dimension calculated. 

 

  

Figures 8 and 9. Reproduction of Bovill’s images of the coastline D=1.3215 and Condominium One D=1.426 of 

Sea Ranch. 



  

 

Figure 10 Reproduction of the coastline at Sea Ranch D=1.249  

 

  

Figures 11 and 12. Reproduction of north (left) and south (right) elevations of Condominium One at Sea Ranch  

 

 

Figures 13 and 14. Reproduction of east (left) and west (right) elevations of Condominium One at Sea Ranch 

Analysing the same image of the coastline at Sea Ranch, (see table 2) Bovill’s result (D = 1.329) is 

higher than the computational result for this paper (D = 1.215). This lower result by comparison is 

typical for the computer program. The results for the remaining images, all produced for this paper, 

show high percentage differences when comparing the Sea Ranch coastline with the condominium. 

The first set of results, based on Bovill’s original drawings, have a significant difference of D = 0.211 

or 21%. The second set of results, which compares images produced from the original architectural 



  

documentation, has a smaller range to the first set (D = 0.1325, or 13%) however, the results are still 

not what would be considered “close”. It is interesting to note that the fractal dimension of Bovill’s 

image of the coastline (D = 1.215) is close to the fractal dimension of the site plan provided by 

Lyndon and Alinder (D = 1.249), with a %gap of 3.4 %, this is the tightest range of any two related 

images studied in this paper.  

Table 2: Comparison of average fractal dimensions calculated for Sea Ranch 

Results D(coastline, 

Bovill 96) 

D(Con.1, 

Bovill 96)  

D(range) %gap D(Coastline, 

Lyndon & 

Alinder) 

D(Con.1, original, 

average)  

D(range) %gap 

Bovill 

(1996) 

1.329 - - - - - - - 

This paper 

(2009) 

1.215 1.426 0.211 21.1% 1.249 1.382 0.1325 13.2% 

 

Rather than supporting Bovill’s case for a relationship between architecture and its 

surroundings, the results for Bovill’s original images of Sea Ranch suggest a significant 

difference between the fractal dimensions of the images of the buildings and of their settings. 

The new results provided in this paper, of an additional elevation and the associated coastline, 

are marginally more supportive of Bovill’s proposition but are still not convincing.  

Discussion and Conclusion 

The process of re-testing the results for Amasya and Sea Ranch reveals several weaknesses in various 

versions of the box-counting method itself. In the first instance, Bovill’s original results were 

produced by hand, using tracing paper and pencil. The number of scales (or grids) he placed over the 

image were limited for this reason and his results are variable in quality (for Bovill, 28% is a close 

result). Lorenz used a more accurate software-based method that relied on a greater number of grids 

(scales of analysis) but with the same original drawings. Lorenz’s research produced a more realistic 

gap (19%) but one of the known problems with the box-counting method is that thick lines in the 

original image can produce anomalous readings; this is why the computational version first reduces all 

lines to a one-pixel width. These differences or inconsistencies in the method and its application 

explain the reason why the similarity between the natural and built forms in Amasya can vary between 

28% and 8% using the same analytical method. 



  

What does this say about Bovill’s conclusion for Amasya; that “the indigenous builders somehow 

applied the rhythms of nature to their housing site layout and elevation design” (p. 145)? From the 

point of view of quantifiable data, and with the computational method as a benchmark, the human eye 

can readily detect visual similarities between objects with a D range of less than 8%. For example, the 

visual difference between one of Le Corbusier’s Modernist elevations, and one of Wright’s Prairie 

House elevations is around 8% (Ostwald, Vaughan & Tucker, 2008). This means that the visual 

similarities between the images of Amasya are not especially striking (~8%) and for Sea Ranch even 

less so (~13-21%). In mathematical terms, for comparisons between buildings, a D range of 2% seems 

to suggest a high degree of similarity and a D range of over 28% is a very low degree of similarity.  

Ultimately, the results of this paper do not convincingly support Bovill’s proposition of a local 

architecture being a reflection of its natural setting, as the gap in the fractal dimensions of the images 

analysed is too large to provide compelling evidence. However, these results are limited by the 

number of images tested, and the selection of images. The images tested in this chapter were chosen to 

represent Bovill’s original data, yet, a more rigorous methodology could be applied and a much larger 

selection of representational images of the built and natural landscape chosen for analysis. This will be 

the subject of future research. 
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